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Abstract

Cereals like rice, wheat, maize, sorghum and millets are the crops 
with total annual yields of 2000 million tons whereas two-third 
population consumes only wheat worldwide. Demand for cereals is 
gradually increasing so there is a need to improve the agronomic 
and molecular parameters to enhance the quality and productivity of 
cereals. Nitrogen is one of the essential nutrients required by plants; 
however, cereals are unable to directly uptake nitrogen from the 
environment. The nitrogen content of soil is maintained either though 
fertilizer or organic farming. An excess use of nitrogen compounds 
in any form like water, air, and soil wreaks havoc on the delicate 
rhizosphere. An alternative sustainable solution is the incorporation 
of biological nitrogen fixation into cereals that reduces the undesired 
effects of chemical nitrogen. In this review article we will discussing 
how the fertility of soil is maintained using diazotrophs and genetically 
engineering in nitrogen fixing pathways in cereals. 
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1. Introduction

Agriculture covers nearly 40% of the world’s land surface 

with 3.4 billion ha of pastures, 1.4 billion ha of arable land 

and 136 million ha of permanent crops. There is huge 

demand for cereals in the global market because it has 

become the foundation of world food security. Cereals 

include wheat, rice, maize, sorghum, millet and barley, 

with total annual yields of 2000 million tons compared with 

about 700 million tons for root and tuber crops and about 

380 million tons for legumes and oilseeds. Wheat and 

rice are two main crops amongst cereals, which account 

for maximum production and widely consumed by two 

third of the population worldwide. Global agriculture 

relies on chemical fertilizers, which are ecologically as 

well as economically expensive. In chemical fertilizer, 

nitrogen is one of the most essential nutrients required by 

plants; however, it is unable to directly uptake from the 

environment. Only half of the applied fertilizer nitrogen 

is used, while remaining is lost from the soil-plant system 

via leaching, volatilization and denitrification. Due to these 

factors not only an annual economic loss of US$ 3 billion 

but also cause pollution to the environment(Westhoff, 

2009). However, the higher dependency on chemical 

based fertilizers leads to decline in the organic carbon 

level in soil, soil biodiversity and impaired soil fertility. 

Therefore, chemical based fertilizers should be replaced 

with ecofriendly alternative molecules that not only fix 

the nitrogen naturally but also maintain the soil and 

agricultural sustainability. Some of the prokaryotes are 

able to utilize the atmospheric nitrogen and convert it into 

NH3, required by plants is known as “Biological Nitrogen 

Fixation”. Currently more emphasis on use of biological 

nitrogen fixation and biofertilizers are being provided in 

agriculture worldwide. The most effective and peculiar 

processes for nitrogen fixation involve symbiosis with 

the root nodule bacteria in legumes and in non-legumes. 

This occurs by various types of interaction between 
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the host plant and bacterium (Oldroyd and Downie, 

2008). It is assumed that, about 20-25% of total nitrogen, 

requirements are fulfilled by nitrogen fixation in rice 

and maize crops (Montanez et al., 2012). For instance, 

Azospirillum spp., Azoarcus spp. and Herbaspirillum, develop 

associative or endophytic relationships with a wide variety 

of plant roots including cereals also. Another symbiosis 

process of nitrogen fixation takes place by cyanobacteria 

(e.g. Nostoc sp. etc) and colonizes different plant organs, 

either intracellularly or extracellularly(Wagner, 2012).

Fig.1 Trends in global averages of fertilizer-nitrogen 
application rates in maize, rice, and wheat (modified 
from Ladha et al., 2016).

No doubt there have been thorough research attempts to 

persuade cereals to fix N after the mid 1970s.  However, 

such efforts are still in debated. Diazotrophs also enhance 

crop growth and development through other processes. 

Thus, it is a novel approach by which nitrogen could be 

fixed directly in soil with the help of microorganisms 

and beneficial for ecosystem. Now days researchers have 

a keen interest in introducing root nodule formation in 

cereals. But nodulation functioning in cereals is tedious 

task, still if succeeded will be a novel achievement in 

agricultural world. This review provides an overview of 

biological nitrogen fixation, its mechanism and different 

approaches for improving biological nitrogen fixation in 

cereals.

2. Nitrogen fixing bacteria associated with 
cereals

In an agriculture eco-system, microorganisms play a vital 

role in nitrogen fixation, solubilization and mobilization 

or nutrient recycling. The use of nitrogen by plants 
involves several steps, including uptake, assimilation, and 
translocation. Schematic overview in plant cell shown in  
fig. 2.

Fig. 2 A general schematic overview of nitrogen uptake and 
assimilation in plant cell

(Nitrate (NO3-) uptake into plant cell is facilitated by nitrate transporters (NRTs). Then NO3- converted in Nitrite 
(NO2-) by nitrate reductase enzymes (NRD), these NO2- transported in the plastid via nitrite transporters (NiRTs), 
where it is reduced into Ammonium (NH4+) with the help of ferredoxin dependent nitrite reductase (NRf+). NH4+ 
derived from nitrate reduction or directly from environment to cytosol by Ammonium transporters (AMTs) are 
assimilated into Glutamine (Gln) by plastidial or cytosolic  Glutamine sythases (GSt). Both plastidial or cytosolic  
glutamine 2-oxoglutarate amino transferase (GOGAT )  synthesize Gln into  Glutamate (Glm),   contributed in 
amino acid pool in which  nitrogen is organically bound and used by further cellular process.)

Nitrogen fixing bacteria present in plant roots that can ‘fix’ 
atmospheric nitrogen (N2) into nitrate known as diazotrophs. 
Similarly, cyanobacteria, (blue green algae), also fix the 
atmospheric nitrogen. However, these are generally 
endemic to soil and their efficiency towards nitrogen in 
rhizosphere is based on behavior, concentrations of organic 
constituents of exudates secreted by plants as well as their 
corresponding ability to utilize organic compounds as carbon 
source(Florence et al., 2016). Therefore, cereals developed 
multiple solutions to associate and accommodate with 
diazotrophs in order to acquire atmospheric nitrogen. This 
led to identifying the two broad categories within cereals, 
based on the degree of intimacy, interdependency and how 
they interact with roots of the plants: 

3. Types of Nitrogen fixing diazotrophs

Free living nitrogen fixing diazotrophs associative and 
endophytic symbiotic nitrogen fixing diazotrophs

3.1 Free living nitrogen fixation

Free-living diazotrophs are the bacteria in soil, which are 

capable to survive and replicate without entering into a 

symbiotic relationship with plants. They are free from the 

direct influence of plant roots and do not involve in any 

structural or morphological accommodation. They might 

be proven as an alternate source of chemical fertilizer 

within coming years as cereals plant system showing the 

phenomena of symbiosis.

In the last decades, the number of free-living diazotrphs in 

cereals has gained attention due to their nitrogen fixing and 

other growth promoting ability. Various species of bacteria 

like, Azotobacter, Beijerinckia, Derxia and Clostridium have 

been studied. Crop yield in cereals had been increased by 
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inoculating these strains in many experiments (Bhattarai 

and Hess 1993, Ozturk et al., 2003; Cakmakci et al., 2001). 

In corn plants, it was observed that the concentration of 

nitrogen in the above ground plant-parts increases with 

the addition of Azotobacter, Beijerinckia and Derxia strains. 

Moreover, it has been reported that Azotobacter can fix 

annually approx. 0.26–20 kg N/ha and it may be used in 

crop production as a substitute for a considerable amount 

of mineral nitrogen fertilizers (Govedarica et al., 1997). The 

dosages of chemical fertilizer for wheat production can be 

significantly reduced by using Azotobacter and Pseudomonas 

inoculums (Yousefi and Barzegarin, 2014). Azotobacter and 

Azospirillum sp. have increased the available nitrogen in 

the soil, which could enhance the grain number and grain 

yield in wheat (Chaudhary et al., 2013; Lakshminarayana et 

al., 2000; Vessey, 2003). Different analogues of Azotobacter 

(Msx1, Msx27, Mal27, Mal30, Mac19 and Mac27) have 

increased grain yield, which is varying from 10 to 30% 

under field conditions. The percent of seed germination 

in rice, maize, wheat cv. Sonalika was stimulated when 

treated with Azotobacter sps. 

A cyanobacterium, such as Blue Green Algae (BGA) is 

one of the major components of the free nitrogen-fixing 

bacteria in paddy fields. Species of Nostoc, Anabaena, 

Tolypothrix, Aulosira, Cylindrospermum, Scytonema and aquatic 

fern (Azolla) found in rice fields have shown symbiotic 

relation with BGA and contribute significantly in soil 

fertility or green manuring.  Besides rice, other crops 

(wheat, sorghum, maize and sugarcane) also show good 

response against cyanobacterial biofertilizer. The co-

cultivation effect of Nostoc and Anabaena sp. showed the 

significant enhancement of plant nitrogen, root and shoot 

length in different wheat varieties (Obreht, 1993). Various 

efficient nitrogen-fixing strains (Nostoc linkia, Anabaena 

variabilis, Aulosira fertilisima, Calothrix sp., Tolypothrix sp. 

and Scytonema sp.) were isolated from different agro-

ecological regions and utilized for rice cultivation (Prasad 

and Prasad, 2001).  

3.2 Associative and endophytic symbiotic nitrogen fixation 

It is well known that Rhizobium is one of the best examples 

of symbiotic interaction to fix the nitrogen in legumes 

(Oldroyd, 2013). However, true symbiosis does not exist 

in cereal crops. Some of the bacteria are known which 

grow in the rhizosphere in close contact with the roots 

and exert natural influence between the true symbionts 

and free living. Two essential association exhibiits between 

diazotrophs and cereals to improve the biological nitrogen 

fixation is discussed below: 

3.2.1 Associative symbiotic nitrogen fixing bacterium

Bacterium, which forms a close association with the roots 

of cereal, not only lives in rhizosphere environment, 

but also fixes N2 from the atmosphere and contributes 

passively to the plant growth. This mutualism type of 

association is known as associative symbiotic nitrogen 

fixation. The bacterium grows in the rhizosphere in close 

contact with the roots; sometimes invade the outer cortical 

regions of the roots for fixation of nitrogen. Associative 

nitrogen fixation can supply 20-25 % of total nitrogen 

requirements in rice and maize (Montanez et al., 2012). 

The most common example exhibiting the associative 

nitrogen fixation are the species of Azospirillum (Saikia and 

Jain, 2007) persisting in nature with a wide diversity of 

plants, including wheat, rice, sorghum, maize and several 

non-Poaceae plant species. Positive effect of Azospirillum sp. 

inoculums in wheat was observed in terms of assimilation 

of nitrogen and grain yield under field greenhouse 

conditions (Naiman et al., 2009; Merten and Hess, 1984) . 

3.2.2 Endophytic nitrogen fixing bacterium

Endophytic diazotrophs may have an advantage over 

associative symbiotic nitrogen fixing bacteria, as they 

colonize in the interior of plant roots and grew in less 

competitive zone and establish themselves in the region 

that provide more appropriate conditions for effective 

nitrogen fixation (Reinhold-Hurek and Hurek, 2011; Sturz 

and Nowak, 2000). It has been known from previous 

studies that some nitrogen-fixing endophytic bacteria 

are independently living in root differentiating structure 

called nodules or paranodule with cereal crops (Stoltzfus 

et al., 1997). These nodules predominantly provide a 

favorable environment for nitrogen fixation. Several 

species of Rhizobium, Acetobacter, Klebsiella, Pseudomonas, 

Herbaspirillum, Gluconacetobacter, Burkholderia have been 

reported as endophytes (Baldani and Baldani, 2005) 

(Table1). Wheat grain yield increased significantly 

with the addition of wheat-adapted rhizobial strains in 

field conditions; nevertheless, grain yield also depends 

upon potential of variety, inoculum and the site-specific 

environmental conditions. Recently it was evidenced 

that mixed inoculum contains multiple wheat-adapted 

rhizobium strains performed better than those inocula 
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containing only a single strain . Rhizobium strains are 

potent in developing endophytic association in wheat 

under natural conditions (Yanni et al., 2016). N2-fixing 

R. leguminosarum bv. trifolii and clover nodulator forms 

a natural endophytic association within rice rhizosphere 

and can successfully promote growth of rice seedlings 

under genotobiotic conditions and significantly enhance 

the grain production in field (Dazzo and Yanni 2006). It 

was reported that the H. seropedicae colonizing specifically 

in Poaceae family plants (rice, wheat, maize and sugarcane) 

(Monteiro et al., 2012; Roncato-Maccari et al., 2003). 

Klebsiella pneumoniae342 (Kp342) is an another endophytic 

diazotrophs reported in cereal and observed that it 

relieved nitrogen deficiency in Trenton wheat cultured in 

the absence of N fertilizer. This nitrogen-fixing capable 

Kp342 strain originally isolated from a nitrogen-efficient 

line of maize (Chelius and Triplett, 2000). 

Table 1. Efficient Nitrogen fixing bacteria in the rhizosphere of cereals

S. No. Host plant Nature of BNF Bacteria Reference

1. Wheat Free -Living Azotobacter spp. Chaudhary et al., 2013, 
Lakshminarayana et al., 2000,

Symbiotic Azospirillum sp. Saubidet et al,. 2002, Naiman et al., 
2009

Azospirillum brasilense Dobbelaere et al., 2001, Boddey and 
Dobereiner 1988

Klebsiella pneumoniae 342 Chelius and Triplett 2000, Iniguez et 
al., 2004

Herbaspirillum seropedicae Riggs et al., 2001, Komy et al., 2003 
Patil et al., 2012

Rhizobium spp. Yanni et al., 2016, Yanni et al., 2016

2. Rice Free –Living Azotobacter sp. Singh 2006, 

Symbiotic Azoarcus sp. 

Azospirillum brasilense Omar et al., 1989

Blue Green algae Azolla Rodriguez et al., 2006, Saadatnia 
and Riahi 2009, Wilson  2006

Burkholderia sp. Baldani et al., 2000 

Gluconacetobacter diazotrophicus Muthukumarasamy et al. 2007

Herbaspirillum seropedicae Elbeltagy  
et al., 2001

Enterobacter sp. Alam et al., 2001

Rhizobium leguminosarum bv. trifolli 

3. Maize Free –Living Burkholderia sp. Riggs et al., 2001

Symbiotic Azospirillum brasilense Riggs et al., 2001;; Ribaudo et al., 
2001

Azospirillum lipoferum Dobbelaere et al., 2001 Fages, 1994

Herbaspirillum seropedicae Riggs et al., 2001
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4. Signaling mechanism in biological nitrogen 
fixation

The induction of nodules harbouring nitrogen-fixing 

bacteria is result of complex interaction between BNF 

microorganism and plant. It involves several sets of 

genes and signals from both partners in a coordinated 

expression(Madsen et al., 2010).

Collectively it may be possible that NSP1/NSP2, NF-YA 

and ERN1 act in combination to regulate the expression of 

early infection markers(Smit et al., 2005) such as ENOD11 

with spatial and temporal patterns as shown in Figure 3. 

One of the gene, NAD1 (Nodules with Activated Defense 

1) encodes a novel peptide with two trans-membrane 

domains was highly expressed in the maintenance of 

rhizobial endosymbiosis in nodules (Cerri et al., 2012). 

However the exact regulatory pathway, involved in 

increasing nutrient uptake yet to deciphered.

5. Different approaches for improving 
biological nitrogen fixation in crops

5.1 Conventional approach

5.1.1 Efficient host genotypes and strains used as fertilizer

Identification of diazotrophic bacterial population 

such as Legume-Rhizobia, Parasponia-Bradyrhizobium and 

Actinorhiza-Frankia symbiosis system is the fundamental 

key for efficient biological nitrogen fixation. However, 

rate of symbiotic N2 fixation is variable with plant 

species/cultivar, growing season, and soil fertility. 

In contrast, members of Poaceae do not have such 

type of symbiotic nitrogen-fixing associations as in 

legume(Perez-Montano et al., 2014). Parasponia and 

Actinorhiza. However, Rhizobium has capability to 

induce at low frequency nodule-like structures on 

the roots of rice and wheat upon treatment with cell 

wall degrading enzymes(Reddy et al., 1997). The co-

cutivation of Rhizobium and associative diazotrophs on 

legume nodulation could fix 600 kg of nitrogen ha-1 year-

1 (Hungria et al., 2013). Similarly, in maize inoculated 

with A. caulinodans supplement with auxin had higher 

NPK content in grains and stover (Saikia et al., 2006). 

In case of wheat when inoculated with Azospirillium sp., 

it was observed the nitrates uptake capacity improved 

due to increases the root surface area. The Azospirillum 

sp. strain B510, isolated from a rice plant was shown 

to enhance rice growth as well as yield (Isawa et al., 

2010). Identification of a variety/genotype showing 

high compatibility with BNF strain is also a challenging 

task ahead. The ability of non-leguminous plants to 

stimulate N fixation in their rhizosphere is known as N 

fixation supportive (NFS) trait. Genetic variability for 

NFS trait exists as heritable traits and can be used in 

breeding cereals genotypes with high BNF. However, 

the genotypes with NFS traits can utilize N supply from 

the stimulated associative N fixation.

Fig. 3 Signaling cascade pathway essential for coordinating the expression of genes linked to rhizobial infection in the 
epidermis. 



6

Journal of Wheat Research

5.2 Molecular approaches to explore the nitrogen fixing 
genes 

The development of transgenic tobacco in the early 1800, 

have opened a gateway for the development of transgenic 

crops with improved yield and stress tolerance. Golden 

rice and Bt-maize are potential example of transgenic 

which revolutionize in the area of cereal. Engineering  

nitrogen-fixing symbiosis by adapting existing signaling 

and developmental mechanisms to facilitate a suitable 

environment for nitrogenase activity in the plant nodule 

would be proved best solutions (Oldroyd and Dixon, 2014; 

Rogers and Oldroyd, 2014).

5.2.1 Molecular markers in biological nitrogen fixation

For nitrogen evaluation, nitrogenase biosynthesis and 

N2 fixation, both are cumbersome processes. Thus, the 

expression of nif genes using molecular markers is the 

preliminary approach of validation (Schmid and Hartmall, 

2007). Initially in cyano-bacterium, gene diversity was 

identified using nif gene probes and PCR fingerprinting 

using RFLP marker (Plazinski et al., 1985). 

Recently Rai et al., 2014, demonstrated that 12 different 

terminal restriction fragments (TRF) were isolated using 

nifH-RFLP markers analysis from the soil samples. 

Construction of library is an efficient way to reveal 

the gene diversity of uncharacterized diazotrophs in 

rhizosphere. Ueda et al., (1995) identified diazotrophs 

in rice using PCR-amplified nif-H sequences. The major 

problem using RFLP is pattern of nif-H gene was different 

under cultivation and permanent pasture within same 

soil sample (Poly et al., 2001) which can be resolved 

using cluster analysis of nifH-RFLP profile. The study 

could generate the data with a small variation in cluster 

analysis of nifH-RFLP profile in soil community DNA of 

two species at four different stages of plant development 

that is correlated with the relative stability of microbial 

populations in marsh soil (Burke et al., 2002). 

Two novel endophytic rhizobial strains having dual 

symbiosis property (B. cepacia and R. leguminosorum) 

were isolated from rice root using 16S rDNA sequences. 

They are capable to establish PGPR with rice plants and 

can stimulate nodules in common bean (P. vulgaris) roots. 

It is assumed that this rhizobium strain isolated from rice 

transferred from the bean-nodulated rhizobium through 

Horizontal Gene Transfer during the course of evolution 

(Singh et al., 2006). Besides this, the 16S rRNA is a good 

sign of molecular marker due to its highly conserved 

function and ubiquitous distribution. The sequence 

of 16S rRNA varies from highly conserved to highly 

variable region. By studying the 16S rRNA sequence 

of cyanobionts, a single coralloid root of Cycas revoluta 

harbor with more than two cyanobacterial strains and 

in multiple roots from a single plant diversity was also 

observed (Gheringer et al., 2010; Yamada et al., 2012). 

6. Genomic regions/QTL for nitrogen fixation

Important root architectural traits like root length, 

diameter, surface area and volume, presence of root 

hairs and nodulation traits which play key role in BNF 

are known to be genetically controlled by multiple 

genes or genomic regions referred to as quantitative 

trait loci (QTLs). Even though few QTLs have been 

reported to be playing a dominant effect on one trait, 

most have been found to have influence on many 

traits. The identification of major QTLs for these key 

BNF influencing traits will be an important objective 

of genetic research and breeding programs aimed 

at enhancing BNF in cereals. RIL population (157 

F2:7) and 105 SSR markers have used to carry out a 

composite interval mapping and identified two QTLs 

for shoot dry weight, three QTLs for nodule number 

and one QTL for nodule dry weight, all QTLs were 

found to have small effect explained 15.4%, 13.8% and 

6.5% of total variation for these three traits respectively 

(Santos et al., 2013). In Lotus japonicas, using a RIL 

population 34 QTLs controlling key BNF traits such 

as acetylene reduction activity (ARA) per plant, ARA 

per nodule weight, ARA per nodule number, nodule 

number per plant, nodule weight per plant etc. were 

identified and mapped (Akiyoshi et al., 2012). A novel 

nitrogen-dependent gene Ndhrl1 was isolated from 

wheat and mapped it to the short arm of chromosome 

2B which is associated with the lesion mimic trait. This 

putative gene was further delimited into an interval of 

8.1cM flanked by the CAPS/dCAPS markers 7hrC9 

and 7hr2dc14 (Li et al., 2016). Similar studies could 

be of great importance in cereals, for identification of 

contrasting genotypes, which support BNF, is the first 

and foremost step in developing mapping populations 

and further mapping of QTLs.
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7. Engineering symbiotic nitrogen fixation

Replacing nitrogen fertilizer globally would require 

nitrogen fixation in cereals equivalent to the legumes, 

and it would be extremely challenging. To introduce a 

symbiosis system in cereals some essential genetic changes 

would be introduced such as recognition of Nod factors, 

organogenesis of the root nodule, and establishment of 

a suitable environment for nitrogenase activity inside 

the nodule (Curatti et al., 2014). One potential criticism 

to transfer the legume symbiosis into cereals is the 

yield penalty associated with the increased demand on 

photosynthesis required to support nitrogen fixation. 

There are multiple biotechnological approaches currently 

being explored that could deliver fixed nitrogen to cereal 

crops (Oldroyd and Dixon, 2014; Beatty and Good, 2011). 

Recently a key element that facilitates the movements 

of calcium in plants was identified which signals to the 

nitrogen-fixing bacteria and stimulates the development 

of nodules on roots ( John et al., 2007). It has also been 

reported that the Nod factors are similar to Myc factors 

(mycorrhizal symbiosis) may leads to the activation of a 

common symbiosis signaling (SYM) pathway (Maillet 

et al., 2011). The direct transfer of nitrogen fixation (nif) 

genes into non-legumes has also become more feasible 

especially six out of the numerous nif genes are required 

for FeMo-Co biosynthesis and nitrogenase activity. Wheat 

plants inoculated with nif-H mutant of Klebsiella pneumonia 

grown in N-deficient media showed unhealthy plant 

growth in comparison to wild type K. pheumonia-inoculated 

plants (Iniguez et al., 2004). Thus, nif-H gene play major 

role in biological nitrogen fixation and this could be 

complemented if nif-H gene gets possibly transformed 

in wheat.

8. Future prospects

Biological nitrogen fixation has the potential to reduce 

chemical fertilizer use thereby greatly alleviating the 

environmental impact. However, replacing chemical 

fertilizer would require optimum levels of nitrogen 

fixation in cereals, which is extremely challenging. 

•	 To improve the N2-fixation capacity of the cereals 

through selection and breeding. It would be better 

if breeding for plant varieties, which are more 

successfully exploited by strains or already present 

in soil used as inoculants (Streeter, 1988). 

•	 Lack of rel iable techniques for measuring 

nitrogen fixation in the field is one of the major 

methodological constraints. If non-fixing genetic 

isolines or some kind of indicator plant are 

available, then nitrogen difference method could 

be easily captured. 

•	 Engineering nitrogen-fixing symbiosis in cereals, 

either through transferring the legume-rhizobial 

interaction or by improving pre-existing associations 

in cereal roots. The nitrogenase enzyme itself could 

be introduced into organelles of plant cells to create 

a new nitrogen-fixing capability in cereals.

•	 Establishing highly efficient transformation 

procedures in cereals or finding ways to transiently 

express gene constructs in cereals. 

•	 Indian Council of Agriculture Research (ICAR) 

launched a combined programme with UK at 

ICAR-Indian Institute of Soil Science, Bhopal 

for development of nitrogen-fixation in cereals. 

The group is also working on rice, which would 

be more dependent on BNF and reduces the 

chemical N fertilizer requirement as one of the 

main objective of this collaboration. The ICAR has 

also taken initiative in this area in a coordinated 

project mode involving 11 centers located all over 

India(Incentinizing Research Agriculture).	
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