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Revised: 18 Apr., 2020 Drought is one of the foremost threats for global cereal crop

production with looming risks due to changing climatic scenarios.
Among major cereals, rice wheat and maize are commonly grown
worldwide for their importance as staple food as well as significance
in fulfilling the nutritional requirements among the escalating
human population. Drought being a complex trait is difficult to
manage through conventional breeding approaches therefore, recent
advances in genomics tools has resulted in précised and targeted
identification of mechanisms underlying drought stress tolerance in
cereals. Further, combination of customary breeding advances with
the recent high throughput genomics technologies resulted in the
popularization of genomics assisted breeding. There are various
marker-assisted breeding (MAB) strategies to transfer or introgress
trait of interest; these include marker-assisted selection (MAS);
marker-assisted introgression (MAI), MA-backcrossing (MABC), MA-
recurrent selection (MARS), MA-gene pyramiding (MAGP); genome-
wide selection (GWS) and genomic selection (GS). In this review,
recent advances for achieving drought stress tolerance in major
cereals using genomics assisted breeding (GAB) has been discussed.
We begin with the genetics of drought stress traits, MAB for abiotic
stress tolerance with successful examples of mapped genomic regions
for drought stress tolerance in rice, wheat and maize, respectively
and finally MAI of genomic regions for improvement of drought
tolerance in cereals. Further, in addition to MAB, genomic selection,
an advanced molecular breeding technology, have pronounced
potential to improve multiple traits simultaneously including drought
tolerance in cereals.
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1. Introduction

to conversion of fertile arable lands due to urbanization.

Cereals including rice, wheat and maize majorly
contributed to food and animal feed globally. With
expected 9.7 billion global human population by 2050,
annual cereal production must be augmented so that
future requirement can be met out. In addition to the

fact that arable land is shrinking day by day and has led

Therefore, in the present scenario, it appears hard to
accomplish the projected target of growing the food
production by 70 percent by 2050 (Wani and Sah, 2014).
Repeated incidents of drought roughly in every five
years resulted in up to 40% loss of total rice production

in eastern states of India (Bhandari ez al. 2007; Wassman
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et al. 2009). Considerable accomplishments have been
achieved for increasing the grain yield for most of the
cereals but in the present climate change scenario, abiotic
stresses particularly drought poses a severe challenge in
further yield enhancement and sustaining the present
yields. Abiotic stresses are key yield limiting factors with
anticipated losses due to drought, waterlogging and heat
disclose grave apprehension for productivity in various
crops (Gosal and Wani, 2018; Ahmad ez al., 2019).
Drought stress refers to water scarcity which persuades
vivid changes at molecular and biochemical level which
ultimately changes the morphological and physiological
state of the plant, hence leading to reduced crop growth
and yields (Sallam et al., 2019). Drought being a complex
trait is difficult to manage through conventional breeding
approaches therefore, recent advances in genomics tools
has resulted in précised and targeted identification of

mechanisms underlying drought stress tolerance in cereals.

Hence, combination of customary breeding advances with
the advanced genomics tools resulted in the popularization
of genomics assisted breeding. Quantitative Trait Loci
(QTL) and association mapping (AM) studies assisted
in precise identification of various minor genes and
some major genes responsible for drought tolerance
in major cereals (Chen et al., 2016; Wani et al., 2018).
Similarly, more recent advancements in omics, fine
mapping and expression experiments revealed the
accurate genomic position of genes governing drought
tolerance and categorization of biochemical, physiological
and molecular mechanism and signalling pathways
responsible for the expression of drought tolerant genes.
High throughput phenotyping approaches including
root traits studies, water use efficiency estimation, and
evapotranspiration studies have given further impetus to
precision phenotyping which is a prerequisite for genomics
assisted breeding. Therefore, genomics assisted breeding
tools provide a prospect to accelerate the cereal drought
improvement research worldwide (Tuberosa and Salvi,
2006; Wani ¢t al., 2019). For genomics assisted breeding,
the first and foremost requirement is availability of tightly
linked molecular markers with the trait of interest. Since
drought is a complex trait, so numbers of genes/QTLs
are responsible for imparting tolerance to the crop. These
genes/loci need to be tagged with molecular markers

using high-throughput technology. High throughput

advancements in molecular marker technology have
provided a wider range of molecular markers like RFLP:
Restriction Fragment Length Polymorphism, RAPD:
Random Amplified Polymorphic DNA, AFLP. Amplified
fragment length polymorphism, CAPS: Cleaved Amplified
Polymorphic Sequences, SCAR: Sequence Characterized
Amplified Region, /SSR: Inter Simple Sequence Repeats,
SSR: Simple Sequence Repeats or Microsatellites, STS:
Sequence-Tagged Sites, SRAP: Sequence Related Amplified
polymorphism, TRAP: Target Region Amplification
Polymorphism, DArT: Diversity Arrays Technology, SNP:
Single-Nucleotide Polymorphism, etc., however SNPs are
marker of choice in today’s next generation sequencing
era. Molecular markers offer an alternative approach to
plant breeders to significantly improve elite cultivars for
imparting resistance to biotic and abiotic stresses including
drought, etc. very rapidly and precisely in addition to
conventional selection schemes (Moose and Mumm,
2008; Rana et al., 2019). Molecular markers linked to the
targeted trait/QTLs can be used for crop improvement
endeavours using GAB programmes. There are various
MAB strategies to transfer or introgress trait of interest;
these include MAS; MABC; MAGP; MARS; GWS, and
GS. This review first begins with the genetics of drought
stress traits, then MAB for abiotic stress tolerance with
successful examples of genomic regions mapped for
drought stress tolerance and finally MAI of genomic

regions pertaining to drought tolerance among cereals.

2. Genetics of drought stress traits in cereals

Drought is a complex trait owing to its polygenic nature
and low heritability. The gene action and combining
ability studies are used to discover the mode of gene action
for various agronomic traits under stress and optimum
conditions. For example, leaf temperature, kernels per
ear, 100-grain weight and grain yield plant” in maize are
governed by additive as well as non-additive gene action
(Wu, 1987; Muraya et al., 2006; Igbal et al., 2007; Hussain
et al. 2009). ASI, Anthesis-Silking Interval, being one of
the most important drought stress trait in maize is defined
as the widened interval of anthesis and silking. The cause
behind high ASI is slow rate of ear growth relative to
tassel and therefore delayed silk emergence. Low ASI is
usually preferred as it helps in better synchronization of
male and female flowering plants and therefore ensuring

better seed setting. Similarly, in wheat, both additive and
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non-additive gene action are responsible for grain yield
related traits under stress, but with predominance of
non-additive gene action and medium heritability (Mia
et al. 2017). Drought tolerance in rice is considered as a
quantitative trait considering its complex nature and array
of crop phenotypes linked with it (Mitra 2001). In rice,
the leaf rolling trait was governed by single gene (Singh
and MacKill 1991). In another study, a gene Drt7 was
found to have multiple phenotypic expressions on root
system, plant height, pigmentation and awning behavior
in drought tolerant lines when exposed to stress (Tomar
and Prasad (1996). There are multiple reasons why these
genes governing drought tolerance have not been able
to map in a breeding population and among them the
important ones being the environmental influence and
poor heritability (Vinod e al., 2019). Hence, QTL mapping
is suggested to be a viable option for dissecting genetics
for drought tolerance (Price ¢t al., 2002). Once mapped,
the Loci closely related to the genes governing drought
stress traits can be efficiently used for improving drought
tolerance of mega varieties or popular cultivars which
are good in quality traits but are susceptible to drought
stress (Kumar et al., 2013; Sandhu et al., 2018; Muthu et
al., 2020). In conclusion, the conventional breeding led
to limited success in drought stress tolerance owing to its
complex nature and limitations of conventional breeding
approach. Therefore, genetic dissection of drought
tolerance is important for developing elite drought tolerant
cultivars using conventional and molecular plant breeding
techniques.

3. MAB for abiotic stress tolerance in major
crop plants

The advent of molecular markers initiated the era of
genetic mapping studies. The traits associated with drought
tolerance are governed by genomic regions known as
QTL. A lot of QTL mapping studies have been carried out
for drought tolerance in cereals (Table 1). However, most
of the identified QTLs are of minor effect and less stable
(Choudhary et al. 2019; Gupta ez al. 2020). For example,
in wheat, over 50 interval mapping studies conducted
globally resulted into > 1200 QTL (Gupta et al. 2020).
The maximum numbers of QTLs have been reported
for thousand grain weight followed by grain yield under
drought stress and optimum moisture conditions. In case

of physiological traits, chlorophyll content followed by

water soluble carbohydrates were maximum targeted
traits for QTL identification. However, only 70 QTLs
were found to be major effect with PVE ~>20%), and out
of these 19 QTL were found to be stable as they were
detected in > 50% environments. The next section of
the review highlights the progress and recent advances
mapping of QTLs, meta QTL analysis and introgression

of QTLs in rice, wheat and maize, respectively.

3.1 Mapping of genomic regions for drought stress tolerance
in Rice: One of the major limitations in rice production
under rainfed conditions is the drought stress. Hence,
detection and transfer of reliable QTLs for imparting
drought tolerance into region specific elite cultivars
could be an efficient plan to deal with the low rice
production from drought affected areas. In rice, many
QTLs for drought tolerance have been reported so far
but the advancement on MABC based introgression of
the recognized QTLs has not happened to its satisfaction
(Tablel). Prince et al. 2015 mapped three QTLs (RM8085,
1728 and RM6836) for physiological and yield traits using
RIL population (IR20 x Nootripathu). These QTLs may
be efficiently exploited for introgression into elite lines for
targeting drought affected zones. Similarly, for mapping
deep rooting trait, SNP based genotyping platform was
used on RILs and AM (Association mapping) panel
to mapped six QTLs (Lou et al. 2015). Meanwhile, 10
QTLs for physiological and productivity linked traits
were observed by Sangodele ¢t al. (2014) under drought
stress using backcross inbred lines (Swarna x WAB 450).
However, Lang et al. 2013 utilized BC,F, population of
OM1490 x WAB880-1-38-18-20-P1-HB and reported 4
QTLs for root length and root dry weight. These QTLs
for dry root weight exhibited a phenotypic variation in the
range of 20.7% to 30.8%. Bhattarai e al. (2018) used GBS-
based saturated linkage map to identify drought responsive
QTLs during vegetative growth. This study, based on
evaluation of RILs developed from Cocodrie and N-22,
identified 14 additive QTLs for various root and shoot
traits. Maximum number of these QTLs were mapped on
Chromosome 1 indicating it as potential carrier of drought
stress tolerance. Recently, Hoang ¢t al. (2019) conducted
GWAS studies for mapping of different drought responsive
and recovery traits using 180 rice landraces panel from
Vietnam and 21,623 SNPs marker. The study revealed
17 different QTLs for various traits including leaf relative

water, its slope and drought sensitivity score.
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3.2 Mapping of genomic regions for drought stress tolerance
in wheat: Wheat production is limited by the drought
stress, especially in the rainfed ecologies globally. Hence,
the identification of QTLs for drought stress tolerance is
an important step for development of drought tolerant
cultivars in wheat. Root architectural traits have significant
role in imparting drought stress tolerance to plants.
Christopher et al. 2013 mapped 4 QTLs , for seminal
root angle and 2 for seminal root number in a SeriM82
and Hartog based doubled haploid (DH) population.
Zhang et al. 2013 mapped six major QTLs for drought
stress tolerance associated traits. Merchuk-Ovnat ef al.
2016 used wild emmer wheat as source of tolerance to
develop RILs and mapped three QTLs pertaining to
yield and biomass on chromosomes 1BL, 2BS and 7AS.
Later, 13 QTLs for abscisic acid content were identified
by Barakat et al. (2015) in F, population (YecoraRojo and
Pavon 76). Similarly, Malik et al. 2015 identified four QTLs
for photosynthesis, cell membrane stability and RWC on
chromosome 2A in F, population (Chakwal-86 (tolerant)
x 6544-6). In mapping study on DH population (based
on cross of RAC875 and Kukri) under drought stress,
Shahinnia et al. 2016 identified four main stable QTLs
for drought tolerance, two QTLs each for grain yield and
kernel width/thickness ratio. Dolferus et al. 2019 used a
DH population (Cranbrook x Halberd) and QTLs for
spike grain numbers on chromosome 5A and 2A. Further,
Liu ez al. (2019) used 276 RILs derived from cross between
a parent of synthetic origin (SYN-D: Croc 1 / Aegilops
squarrosa (224) // Opata) and an elite line,Weebill 1. The
study used SNP markers and reported 71 QTLs, of which
eight were common among heat, drought and heat and
drought stresses. In addition to this, five QTL hotspots for
yield and associated traits were identified under all stresses
in chromosomes 2A, 3D, 6D (two) and 7B. The parental
line, SYN-D provided 37 QTLs , and rest being provided
by Weebill 1. In a recent multi-location study by Tura et
al. (2020), main-effect genomic region pertaining to yield
QTL (QYld.aww-1B.2) was fine-mapped to 2.9 cM region
which corresponds to physical distance of 2.2 Mbp with
39 predicted genes. Such fine mapped QTLs can be easily
targeted for introgression studies. GWAS studies help in
the establishment of marker traits associations (MTAs)
and MTAs identified in the same cluster of SNP linkage
disequilibrium can be converted to QTL (Condorelli ¢t al.
2018; Touzy et al. 2019). Gahlaut ez al. (2019) identified
46 candidate genes for drought tolerance associated traits
using MTAs in a GWAS study.

3.3 Mapping of genomic regions for drought stress tolerance
in maize: Maize, being a rainfed crop is quite prone to face
the drought stress affecting the global maize production

and hence economic losses. A number of mapping studies
revealed significant QTLs for drought stress tolerance
traits in maize. Almeida ez al. 2013 used three populations
(RILs and two F, ) for evaluation under drought stress
and optimal conditions and mapped 83 and 62 QTLs for
grain yield and ASI, respectively. The study also reported
six stable metaQTLs on chromosomes 1, 4, 5 and 10 for
grain yield along with two adaptive metaQTLs (each for
grain yield and ASI) for drought stress conditions. Using
the same population, Almeida ez al. 2014, mapped cluster
of QTLs for drought associated morpho-physiological
traits such as staygreenness, ears per plant etc. on different
chromosomes. Zhao et al. 2018 identified 21 stable
QTLs under moisture stress conditions. In addition, the
study also identified 36 meta-QTLs using the compiled
information of 26 population under 52 well-watered and
38 drought stress environments. Recently, Abdelghany
et al. 2019 identified 167 QTLs under six drought stress
environments for ear length; diameter; weight, kernel
weight per ear, and hundred-kernel weight located on
chromosome number 1, 2, 3, 4, 5, 7, 8, 9 and 10 using
213 F, , families (cross of H082183 (drought-tolerant) and
Lv28). In another metaQTL study, 20 meta-QTLs were
identified in 19 populations. Interestingly, 34 candidate
genes in the corresponding mQTL regions were found
to be associated with the inflorescence development and
drought resistance regulation (Zhao et al. 2017). Ina GWAS
study, Li et al. 2016 used a panel of 5000 inbred lines and
identified SNP associations with 354 candidate genes. Out
of the these, 52 exhibited differential expression in B73
line under the optimal and drought stress environments

(Li et al. 2016).

4. Marker assisted introgression for
improvement of drought stress tolerance

Drought tolerance, being polygenic in nature and
availability of only limited major and stable QTLs,
can be improved by introgression of major QTLs via
MABC or combining favourable major and minor effect
QTLs via MAGP and MARS. In rice, development
of Nepalese drought tolerant variety, Sabitri is one of
the successful examples of MABC (Dixit et al. 2017).
Similarly, MAGP has been utilized in rice to develop
drought-tolerant pyramided lines (MR219) which
have productivity potential of >1500 kg ha ' under
water limited environments (Shamsuddin et al. 2016).
In another MAGP study, FUNAABOR-2 variety was
pyramided with two QTLs named qDTY12.1 and gDTY2.3.
The pyramided lines exhibited higher yields over the
lines with single or no QTL that indicates towards the
significant positive interactions of pyramided QTLs to
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impart drought tolerance at reproductive stage (Anyaoha
et al. 2019). Hence, the positive interaction among QTLs
in different backgrounds can help in combining multiple
QTLs for drought stress together and even with biotic
stress QTLs (Sandhu et al. 2018). For example, Muthu
et al. 2020 developed multiples stress tolerant version
of Improved White Ponni (IWP) by introgression of
different major effect QTLs, viz. gDTY,, and gDTY2.1 for
drought tolerance, Saltol for salinity tolerance, and Subl
for submergence tolerance. In wheat, MABC was carried
out for introgression of QTLs related to drought tolerance
governing traits such as chlorophyll content, grain yield
and thousand kernel weight into elite varieties of India,
HD2733 and GW322 varieties (Jain et al. 2014). Recently,
MABC was carried out for introgression of major drought
tolerant QTL for yield, Qyld.csdh.7AL into elite Indian
wheat cultivars namely HUW234, HUW468, K307
and DBW17. The introgressed lines exhibited low stress
sensitivity index which was validated with their higher
yields under rainfed condition (Gautam et al. 2020). Ribaut
and Ragot (2007) tested the efficiency of MAS approaches
in maize and revealed the efficiency of selecting 10-20
genotypes during MABC cycle for higher genetic gains.
However, considering the majority of minor effect QTLs
for drought tolerance, Bankole et al. 2017 suggested the
use of MARS for development of drought tolerant inbred
lines. Later, Cerrudo et al. 2018 recommended the use
of QTL-MAS in forward breeding for accumulation of
desirable alleles with strong additive QTL in early selection
cycles while GS-MAS recommended for accumulation of
favourable alleles with smaller additive effects. Further, GS
studies carried out by Shikha ¢t al. (2017) in maize, revealed
the involvement of drought-responsive transcription
factors governing the regulation of stomatal closure, root

development, hormonal signaling and photosynthesis.
5. Conclusion and future prospects

For mapping of drought tolerance, being a polygenic
trait, breeders must use high throughput phenomics
tools in addition to high-throughput genomics, since we
have achieved a lot in terms of genomics technologies.
Once tightly linked genomic regions with stability and
consistency will be identified, then only effects should be
on their introgression using various molecular breeding
strategies via MABC, MAGP and MARS. Finally, genomic
selection, an advanced molecular breeding technology,
having great potential should be used in crop improvement
endeavours to improve multiple traits simultaneously

including drought tolerance in cereals.
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