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Drought is one among the several climatic factors impeding 

crop productivity and poses a challenge to global food security. 

The intensity and frequency of droughts are predicted to 

increase by 50% to 200% during the 21st century in various 

geographical regions (Trenberth et al., 2014; Zhao et al., 2017). 

Raising drought tolerant wheat genotypes is the eventual 

means of safeguarding the crop against water stress. However, 

drought tolerance is a complex trait governed by various 

genes, each with minor effects (Bernardo 2008). Knowledge 

about germplasm diversity significantly impacts the crop 

improvement programs by supplying novel sources of gene 

combinations (Ayana and Beleke, 1998). Prior knowledge 

of genetic diversity and relationships between the elite lines 

and cultivars are useful for development of new cultivars. It is 

highly desirable to characterize genetic diversity among wheat 

germplasm collections to broaden genetic diversity in future 

wheat breeding programmes (Haung et al., 2002). Molecular 

markers have proven their role in crop improvement programs 

by providing selection precision and accelerating the efforts.  

Assessing genetic diversity within a narrow genetic pool of 

novel breeding germplasm could make crop improvement 

more efficient by the directed accumulation of desired alleles. 

This is likely to speed up the breeding process and decrease 

the amount of plant material that needs to be screened in 

such experiments.  Genetic variation in common wheat 

have been studied using different molecular markers such as 

RAPDs RFLP, AFLPs, SSR, STS, ISSRs, gene based and 
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MIR based SSRs (Siedler et al., 1994, Gupta and Varshney, 

2000, Sharma et al., 2021, Mehta et al., 2021). Since SSRs are 

multi-allelic nature, co-dominant inheritance, reproducibility, 

abundance and high polymorphic information content (PIC). 

A small number of SSR markers are adequate to differentiate 

the closely related wheat and barley species (Plaschke et al., 

1995; Russel et al., 1997; Singroha et al., 2020).

In present investigation, we determined genetic diversity 

and relationships at the molecular level among the 

fourteen wheat genotypes using microsatellite markers. 

The phylogenetic relationships and genetic diversity thus 

analyzed will assist in parental selection in wheat breeding 

programmes.

We procured fourteen wheat genotypes from the 

Germplasm Unit, Indian Institute of Wheat and Barley 

Research, Karnal and were used for cluster analysis at 

molecular lene. Fresh and young leaves were used to 

extract genomic DNA according to the method devised by 

Saghai-Maroof et al. (1984). A total number of 44 GWM 

were selected, representing each wheat chromosome for 

genotyping (Table 1). Polymerase chain reaction (PCR) 

was carried out as described earlier (Sharma et al., 2016). 

The amplification products were resolved in 2% agarose 

in 1× Tris-borate EDTA buffer (45 mM Tris-borate and 1 

mM EDTA) and were visualized under UV light using Gel 

Documentation System (Alpha Innotech, USA).  
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The presence of band was scored as 1 and absence of band 

was scored as 0 in the binary data matrix. Using the SAHN 

module of the NTSYS-pc Jaccard coefficients were used 

to construct unweighted pair-group method of arithmetic 

average (UPGMA) dendogram. 

In PCR amplification, ninety alleles were identified with 

different size fragments. The average number of alleles 

per SSR marker was 3.2, ranging from two alleles for 

Xwgm292 to five for Xwgm264. A wide range of alleles 

of expected fragment sizes was obtained by different 

primer pairs with strong amplifications. The primesr 

Xwgm292 and Xwgm264 yielded five alleles as shown in 

Fig. 1a and 1b. However, the higher number of alleles 

per locus has been reported in wheat (4.6 to 18.1), barley 

(8.6), and several other crops like tomato (3.1), sorghum 

(2.3), cucumber (2.6), melon (2.9), and watermelons (2.0) 

(Fahima et al., 1998; Prasad et al., 2000; Huang et al., 2002; 

Salem et al., 2008; Mohammadi et al., 2009). The average 

number of alleles per locus (3.2) in this study was lower 

in comparison to those reported earlier. We identified a 

total of 23 alleles at 7 loci with an average of 2.67 alleles 

per locus in A genome, while 15 loci with an average of 

3.0 alleles per locus were detected in B genome. In the 

D genome 30 alleles were detected with 10 microsatellite 

loci with an average of 2.87 alleles per locus, suggesting 

diversity at various levels in three genomes.

Table 1. SSR primers and their chromosome 
location used for determining the genetic 
diversity of wheat genotypes.

S.N. SSR primers  Chromosome 
location

1. Xgwm357,Xgwm666,Xgwm497 1A

2. Xgwm011,Xgwm131,Xgwm140 1B

3. Xgwm033,Xgwm106 1D

4. Xgwm296,Xgwm312 2A

5. Xgwm120,Xgwm148 2B

6. Xgwm102,Xgwm349 2D

7. Xgwm030,Xgwm369,Xgwm155 3A

8. Xgwm77,Xgwm340 3B

9. Xgwm71,Xgwm161 3D

10. Xgwm165,Xgwm397 4A

11. Xgwm107,Xgwm251 4B

12. Xgwm624 4D

13. Xgwm205,Xgwm304 5A

14. Xgwm67,Xgwm68 5B

15. Xgwm119,Xgwm292 5D

16. Xgwm459,Xgwm494 6A

17. Xgwm219,Xgwm132 6B

18. Xgwm55,Xgwm469 6D

19. Xgwm260,Xgwm282 7A

20. Xgwm146,Xgwm344 7B

21 Xgwm44,Xgwm37 7D

Fig. 1 Gel electrophoresisof amplification productsobtained with microsatelliteprimer pairs Xgwm 292 (a) and Xgwm 264 
(b) in 14 wheatgenotypes. M=100 bp standardDNA marker. Lane 1) NI5439, 2) C 306, 3) WH 147, 4) HD 2781, 5) PBW 
175, 6) WR 544, 7) HUW468, 8) PBW 343, 9) HD 2733, 10) GW 322, 11) MACS 2496; 12) HD 2932, 13) HUW 234 and 
14) Raj 4037.
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The lowest allele per locus among the seven homoelogous 

chromosome groups was obtained in group 6 identifying 

only one allele for Xgwm 148. The group 2 chromosomes 

were identified to have the highest no. of alleles as 

presented in Table 2.  In a genome-wise comparison, the 

B genome was found to be highly diverse (0.65) followed 

by D (0.50) and A (0.44) genomes.  For homoeologous 

chromosome groups, the highest PIC value of 0.53 was 

observed for group 2 chromosomes markers and the 

lowest value of 0.27 for group 7 markers. The observations 

made in this study are contrary to those made by Iqbal 

et al. (2009), where they reported highest PIC value for 

A genome followed by D and B genomes. Similarly, 

we report highest value of PIC for homologous group 

2 chromosomes in contrast to homoeologous group 7 

chromosomes as reported by Roder et al., (2002;) and  

Haung et al., (2002). This difference can be attributed to 

the genotypes belonging to different geographical regions 

and the set of different primer pairs used in this study.

Table 2.  Genetic diversity according to 
genomes and chromosomes across 32 
microsatellite loci

Genome Number of 
alleles

Gene 
diversity

Mean no. of 
alleles/locus

All genomes 90  0.48 3.20

A 23 0.44 2.67

B 36 0.65 3.00

D 31 0.50 2.87

Chromosome

Group 1 16 0.39 2.50

Group 2 22 0.53 3.20

Group 3 10 0.41 2.67

Group 4 14 0.52 2.95

Group 5 10 0.44 2.87

Group 6 06 0.27 2.00

Group 7 12 0.43 3.00

This analysis therefore identifies the divergence of alleles 

specific for a particular geographical region. The maximum 

value of PIC (0.53) in this study is in accordance to the 

earlier studies where PIC values ranged between 0.23-0.90 

(Plaschke et al., 1995, Prasad et al., 2000, Mohammadi et 

al., 2009). However, the mean PIC value in our results 

corroborates those reported by Bohn et al. (1999).

We observed highest genetic diversity confirming that 

there is highest polymorphism in B genome and A genome 

is based on polymorphism studies least genetic diversity. 

The highest polymorphism among B genome is also 

reported by Eujayl et al. (2002) and Wang et al. (2007) in 

wheat as well as by Cho et al. (2000) in rice.

It might be correlated to evolution of each of the three 

wheat genomes. The B genome has originated from 

species closely related to the A. speltoides, a cross-pollinated 

species, whereas A and D genomes are traced to have 

originated from T. urartu and Ae. tauschii, respectively and 

are self-pollinating species. In general, a cross pollinating 

species exhibit higher genetic diversity in comparison to 

a self-pollinating species. This might be the reason why, 

B genome is highly diverse in primitive hexaploid wheat 

as comparison to genomes A and D. During the course of 

evolution of the hexaploid wheat, tetraploid wheat crossed 

with Aegilops tauschii, and produced the hexaploid wheat. 

Consequently, the opportunity of the gene exchange of 

the D genome with A or B genome was lower than that 

between B and A genome. Evidences also suggest that 

B genome chromosomes are rich in repetitive DNA 

sequences and the length of B genome is longer than A 

and D genomes. 

For all possible pairs of varieties, the genetic similarity 

(GS) coefficient ranged from 0.50 to 0.92.  The similarity 

coefficient generated a tree for cluster analysis using 

UPGMA as shown in Fig. 2. The varieties C306/NI5439 

(drought tolerant) had highest similarity of~ 0.92. Apart 

from this more pairs viz. HD 2781/C306, HD2733/HD 

2781 and HD2932/MACS 2496 also showed high degree 

of commonness. The dendrogram based on UPGMA 

algorithm grouped the fourteen wheat varieties into 

two major clusters, I (10 varieties), and II (04 varieties). 

However, two varieties in cluster I (PBW 175) and II (GW 

322) showed considerable diversity with other varieties 

in their respective clusters. The clusters I, and II were 

further divided into two sub-clusters (Ia: five varieties, Ib: 

three varieties; and IIa: four varieties) as shown in Fig. 2. 

Similar investigations have been carried out by Ram et 

al., (2007) using SSR markers.

It was postulated that biased selection of material in the 

previous breeding program might have resulted into high 

level of similarity and narrowed the genetic base of wheat 

germplasm. It is further suggested that more polymorphic 
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microsatellite markers could be used for efficient screening 

of the wheat germplasm by saturating more regions of the 

wheat genome and these microsatellite marker data will be 

useful in identifying diverse parents and for maintaining 

genetic variation in germplasm for trait improvement.
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