Combining ability study on yield and its contributing traits in maize (Zea mays L.)

Prashant Sharma ${ }^{* 1}$ and Uttam Chandel ${ }^{2}$
${ }^{* 1}$ Department of Genetics and Plant Breeding, CSK Himachal Pradesh Krishi Vishwavidayalaya, Palampur, Himachal Pradesh, India
${ }^{2}$ CSSKHPKV SAREC, Kangra, Himachal Pradesh, India

Article history:

Received: 27 Apr., 2022
Revised: 16 Sept., 2022
Accepted: 09 Oct., 2022

Citation:

Sharma P and U Chandel. 2022. Combining ability study on yield and its contributing traits in maize (Zea maysL.). Journal of Cereal Research 14 (2): 189-197. http://doi.org/10.25174/25822675/2022/131247

*Corresponding author:
 E-mail: pras1609@gmail.com

Abstract

Experimental material consisted of 25 lines, 2 testers and their 50 crosses along with standard checks viz,, Palam Sankar Makka-2 and PSCL 4640 were evaluated using Randomized Block Design with two replication during Kharif2020. Genotype mean square was significant for days to 50% tasseling, days to 50% silking, days to 75% brown husk, ear height (cm), plant height (cm), ear length (cm), ear circumference (cm), kernel rows/cob, kernels/row, 1000-kernel weight (g), shelling (\%) and grain yield ($q /$ ha) which indicated the presence of sufficient genetic variability in the material studied. Also the ratio of GCA variance to $S C A$ variance was less than unity for all traits indicated preponderance of non-additive gene action. Among lines, KI-3 exhibited higher grain yield followed by KI-7 and CML 140. These lines also exhibited highest significant GCA effect for grain yield and were identified as promising parents. KI- $7 \times$ LM 13 , CML $140 \times$ LM 13, CML $139 \times$ LM 13 , CML $162 \times$ LM 13 and KI- $3 \times$ LM 14 exhibited maximum SCA effect for most of traits. These promising cross combinations need to be evaluated in multi-location trials over the years to assess their suitability in different agro-climatic zones of the State.

Keywords: Maize, GCA, SCA, Combining ability, gene action

1. Introduction

Maize (Zea mays L.) is the world's third largest grain crop after wheat and rice mainly grown in temperate highlands, tropical as well as in sub-tropical regions. Maize $(2 n=20)$ is a C 4_{4} plant which belongs to tribe Maydae of family Poaceae. It is a highly cross pollinated crop due to which special efforts are required to maintain its genetic purity. It is a tall, monoecious, short day plant having determinate type of growth habit. Development of hybrids in maize includes various steps that starts with development of inbred lines, their evaluation, crossing selected inbred lines and hybrid production. Selection of right inbred line will lead to production of superior hybrids. For this detailed
evaluation of existing germplasm/newly developed elite lines for their potential use in future breeding programmes is required. Combining ability is the measure of the genotype values based on their progeny performance in a definite mating system (Allard, 1960). Combining ability analysis help in selection of most promising parents which can produce superior hybrids when a number of lines are involved. It helps in understanding the nature and magnitude of gene action involved. The nature of gene action involved may be additive and additive \times additive which is due to general combining ability or it may be non-additive which is due to specific combining
ability. The nature of gene action is important factor in determining effective breeding programme. The presence of non-additive gene action is pre requisite for hybrid development programme. Various statistical tools are available to estimate combining ability. Line \times Tester analysis method as developed by Kempthorne in 1957, is used in most breeding programmes as it allows estimation of combining ability, gene effect studies and selection of desirable parents and crosses. Since there is no information available on combining ability and gene action of the newly developed maize inbreds, therefore the present investigation was undertaken involving 25 lines, 2 testers and their 50 crosses along with 2 standard checks to estimate combining ability and gene action involved.

2. Material And Methods

Experimental material consisted of 25 lines, two testers and their 50 hybrids along with two standard checks viz., Palam Sankar Makka-2 and PSCL 4640 were evaluated in
a Randomized Block Design during Kharif2020 with an objective to understand the nature of gene actions involved in inheritance of different traits and estimate combining ability effects for yield and its contributing traits. List of inbred lines, testers and standard checks used is presented in Table 1. The genotypes were evaluated at Experiment Farm, Shivalik Agriculture Research and Extension Centre, Kangra for various maturity, physiological, yield and its contributing characters. Observations were recorded based upon the performance of 10 competitive plants and average was worked out except for days to 50% tasseling, days to 50% silking and days to 75% brown husk, observations were recorded on plot basis. Standard package of practices were followed and plant protection measures were taken whenever required. The results obtained were subjected to statistical analysis as per method suggested by Kempthorne, 1957 and Panse and Sukhatme, 1984.

Table 1: Details of inbred lines and testers used as parents along with checks

Symbol/Code	Inbred line	Source/Pedigree
A) Lines		
L_{1}	CML 33	ICAR-IIMR, WNC, Hyderabad
L_{2}	CML 117	--do--
L_{3}	CML 138	--do--
L_{4}	CML 139	--do--
L_{5}	CML 140	--do--
L_{6}	CML 162	--do--
L_{7}	CML 163	--do--
L_{8}	CML 292	--do--
L_{9}	CML 295	--do--
L_{10}	CML 338	--do--
L_{11}	CML 411	--do--
L_{12}	CML 426	--do--
L_{13}	CML 439	--do--
L_{14}	CML 451	--do--
L_{15}	CML 452	--do--
L_{16}	CML 494	--do--
L_{17}	CM 212	VPKAS, Almora
L_{18}	V 335	--do--
L_{19}	V 340	--do--
L_{20}	V 405	--do--

L_{21}	HKI-1040	ICAR-IIMR, Karnal
L_{22}	HKI-1105	--do--
L_{23}	CM 502	--do--
L_{24}	KI-3	CML161/CML165-B-B-B-4-B-B
L_{25}	KI-7	CML165-B-B-B-1-B-B
T_{1}	LM 13 Testers	
T_{2}	LM 14	PAU, Ludhiana
		C) Checks
C_{1}	Palam Sankar Makka-2	
C_{2}	PSCL 4640	CSKHPKV, Palampur
		Bayers

3. Result and Discussions

The analysis of variance for twelve characters of twenty five lines, two testers and their fifty crosses under study is presented in Table 4.1. Genotype mean square was significant for all traits which indicated presence of sufficient amount of genetic variability among genotypes. Similar results were also obtained earlier by Petrovic et al. (1998); Alam et al. (2008); Patil et al. (2012). Mean squares was further partitioned into crosses mean square, parent mean square and crosses vs parent mean square.

Crosses mean square was significant for most characters under study except shelling (\%) indicated wider difference among crosses and hence possibility of selection for identification of desired crosses. Among parents, mean square due to lines was found to be significant for all traits except for shelling (\%), whereas, mean square due to testers was found to be significant for most characters except for days to 50% silking, days to 50% tasseling, shelling (\%) and days to 75% brown husk indicated presence of sufficient genetic variability among parents. Similar results were reported by Ram et al. (2015); Patil et al. (2012); Negi et al. (2018); Chandel et al. (2019).

Analysis of Variance for combining ability revealed that variance due to lines was greater than variance due to testers for kernel rows/cob, days to 50% tasseling, days to 50% silking, days to 75% brown husk, shelling (\%) and grain yield. This indicated greater contribution of lines towards GCA. Whereas, variance due to testers was found greater than variance due to lines for ear height, plant height, ear length, ear circumference, kernels/row and 1000 -kernel weight indicated greater contribution of testers towards GCA. Also GCA variance to SCA
variance ratio was less than unity for all traits expressing greater importance of non-additive gene effects. This also highlighted the utilization of hybrid breeding scheme for enhancing productivity.

Estimates of GCA effect revealed that none of the lines and testers had proved significant for all traits studied. $\mathrm{L}_{5}, \mathrm{~L}_{24}, \mathrm{~L}_{25}$ were overall good general combiners ability for most characters studied. L_{5} exhibited highest GCA effect for ear circumference, kernel rows/cob, kernels/ row, 1000-kernel weight and grain yield. Also, lines viz., L_{6} and L_{3} had highest GCA effect for days to 50\% tasseling and days to 50% silking. L_{25} exhibited highest GCA effect for ear height, plant height and ear length. L_{24} exhibited significant GCA effects for all characters studied except ear height and plant height. Among testers, T_{1} was good general combiner for ear length, kernel rows/cob, ear circumference, 1000-kernel weight, grain yield and kernels/row, whereas, T_{2} was good general combiner for plant height, ear height. Iqbal et al. (2007); Reddy et al. (2011); Patil et al. (2012); Chaurasia et al. (2020) had also reported good general combiners for similar traits.

Studies on specific combining ability indicated that none of the crosses had proved significant for all traits. Possible combinations of parental GCA effect such as "high \times high", "high \times low", "average \times low", "low \times low" and "low \times high" were involved in crosses with high SCA effect. This indicated presence of non-additive gene effect, especially in "high \times low", "average \times low" and "low \times low" cross combinations. Studies on specific combining ability indicated that $\mathrm{L}_{25} \times \mathrm{T}_{1}$ exhibited highest combining ability for grain yield (high \times high) and ear circumference (high \times high), $\mathrm{L}_{24} \times \mathrm{T}_{2}$ exhibited highest combining ability
Table 2: Analysis of variance for yield and its contributing traits (maturity, physiological, yield and its contributing traits)

Characters	Replication	Genotypes	Cross	Line	Tester	Line \times tester	Parents	Crosses v Parent	Error
Degree of freedom	1	76	49	24	1	24	26	1	76
Days to 50\% tasseling	30.02	15.99**	9.81**	17.54**	0.36	2.48**	17.99**	266.53**	1.11
Days to 50\% silking	30.91	16.71**	10.59**	18.27**	0.49	$3.34 * *$	16.97**	315.35**	1.59
Days to 75\% brown husk	43.66	27.33**	24.04**	41.70**	4.84	7.17**	19.09**	403.05**	1.66
Ear height (cm)	0.52	644.78**	67.53 **	57.03**	252.81**	70.31**	403.39**	35205.94**	16.90
Plant height (cm)	27.43	2437.07**	236.77**	210.06**	948.64**	233.82**	1470.38**	135386.11**	44.07
Ear length (cm)	1.14	24.83**	2.91**	2.80**	10.11**	2.73**	7.78**	1541.65**	0.16
Ear circumference (cm)	0.24	4.70**	1.09**	1.12**	2.99**	0.98**	1.46 **	266.00**	0.03
Kernel rows per cob	0.18	9.17**	1.81**	$2.12 * *$	$3.02^{* *}$	1.46 **	$2.44 * *$	544.84**	0.08
Kernels per row	2.67	71.25**	$34.04^{* *}$	33.13**	88.54**	$32.68{ }^{* *}$	$22.86{ }^{* *}$	3152.55**	0.31
1000-kernel weight (g)	68.88	5989.69**	865.57**	875.09**	1883.56**	813.64**	1830.20**	365218.39**	20.21
Shelling (\%)	30.91	28.22**	12.76	16.89	4.36	8.98	28.74**	772.52**	11.24
Yield (q/ha)	14.61	1275.20**	136.90**	151.75**	387.53**	111.61**	365.00**	80717.22**	2.62

Table 3: Analysis of variance for combining ability (maturity, physiological, yield and its contributing traits)

Source of Variation	Days to 50% tasseling	Days to 50\% silking	to 75\% brown husk	Ear height (cm)	Plant height (cm)	Ear length (cm)	circum- ference (cm)	Kernel rows/ cob	Kernels/ row	1000-kernel weight	Shelling (\%)	Grain Yield (q/ha)
$\sigma^{2} 1$	3.76	3.73	8.63	-3.31	-5.94	0.01	0.03	0.16	0.11	15.36	1.97	10.03
$\sigma^{2} \mathrm{t}$	-0.04	-0.05	-0.04	3.65	14.29	0.14	0.04	0.03	1.11	21.38	-0.09	5.51
$\sigma^{2} \mathrm{gca}$	0.09	0.09	0.22	-0.03	0.04	0.00	0.00	0.00	0.01	0.69	0.05	0.34
$\sigma^{2} \mathrm{sca}$	0.60	0.81	2.68	27.18	95.64	1.28	0.47	0.68	16.21	395.52	3.20	53.95
$\sigma^{2} \mathrm{gca} / \sigma^{2} \mathrm{sca}$	0.162	0.119	0.084	-0.001	0.000	0.002	0.003	0.007	0.001	0.002	0.016	0.006

Table 4: Estimates of general combining ability (maturity, physiological, yield and its contributing traits)

	Days to 50% tasseling	Days to 50% silking	Days to 75\% brown husk	Ear height (cm)	Plant height (cm)	Ear length (cm)	Ear circumference (cm)	Kernel rows /cob	Kernels/ row	1000-kernel weight (g)	Shelling (\%)	$\begin{aligned} & \text { Grain } \\ & \text { yield (q/ } \\ & \text { ha) } \end{aligned}$
Lines												
L_{1}	1.47 *	1.61 *	3.02 **	-3.89	-6.85 *	-0.49 *	0.35 **	0.66 **	0.83 **	13.24 **	-1.18	3.38 **
L_{2}	1.22 *	1.36 *	1.52 *	-6.39 **	-12.10 **	0.01	0.26 **	0.46 **	1.01 **	6.99 **	-0.08	2.58 **
L_{3}	-3.78 **	-3.64**	-4.98 **	-3.14	-5.10	0.54*	0.68 **	0.71 **	3.38 **	16.49 **	2.95 **	5.98 **
L_{4}	-0.28	-0.64	-1.98 **	-2.39	-6.85 *	0.89 **	0.78 **	1.11 **	4.13 **	18.74 **	-1.78*	8.83 **
L_{5}	-0.28	-0.39	-0.98	0.36	2.15	1.34 **	1.00 **	1.46 **	5.48 **	24.99 **	-1.00	11.16 **
L_{6}	-3.78 **	-3.64**	-6.98 **	2.61	6.65 *	0.96 **	0.63 **	0.51 **	3.91 **	10.99 **	1.07	6.44 **
L_{7}	-3.03 **	-3.64**	-5.98**	1.86	1.90	-0.41 *	-0.10	0.46 **	0.61 *	6.99 **	2.50 **	1.96 *
L_{8}	-3.03 **	-2.89 **	-2.98 **	-0.14	3.90	-0.74**	-0.25 *	-0.24	-1.09 **	-5.76*	0.35	-2.29 *
\mathbf{L}_{9}	-0.03	-0.14	1.02	0.36	-2.10	-0.01	0.16	0.06	0.43	5.49*	-2.15 **	1.44
L_{10}	0.72	0.36	1.02	-7.39 **	-14.10**	-0.46 *	-0.57 **	-0.74 **	-2.42 **	-14.76 **	-0.40	-5.55 **
L_{11}	3.47 **	3.61 **	5.02 **	-5.14*	-9.10 **	-0.06	-0.07	-0.29	-1.24**	-3.01	1.00	-2.42 *
L_{12}	0.97	0.86	1.02	1.61	6.40	-0.44 *	-0.12	-0.24	-1.27**	-3.01	0.10	-2.80 **
L_{13}	3.97 **	4.36**	6.02 **	-5.89 **	-9.85 **	-0.76 **	-0.52 **	-0.64**	-1.79 **	-13.51 **	1.90 *	-6.20 **
L_{14}	1.47 *	1.36 *	2.02 **	2.61	0.15	-0.39	- 0.30 **	-0.24	-1.39 **	-2.26	2.92 **	-2.93 **
L_{15}	-0.78	-0.89	0.02	3.36	7.15 *	-0.91 **	-0.27 **	-0.44 **	-1.59 **	-10.51 **	-1.23	-3.17 **
L_{16}	-0.28	-0.64	-1.98 **	0.86	0.15	-0.84 **	-0.12	-0.49 **	-1.72 **	-10.01 **	1.92 *	-2.81 **
\mathbf{L}_{17}	-0.03	-0.14	1.02	0.36	-0.10	1.04 **	0.31 **	-0.04	1.88 **	10.99 **	0.62	3.13 **
L_{18}	0.72	1.11	3.02 **	2.86	4.65	-0.56 **	-0.15	0.16	-1.39 **	-4.51	-3.90 **	-2.22*
\mathbf{L}_{20}	-0.28	-0.14	0.02	4.11 *	8.40*	-0.39	-0.54 **	-0.84 **	-3.42 **	-18.51 **	-1.43	-5.74**
L_{21}	-1.53 **	-1.14	-1.98 **	-0.64	0.15	-0.46 *	-0.62 **	-0.89 **	-3.57 **	-20.26 **	2.22 **	-7.69 **
L_{22}	0.72	0.61	2.02 **	2.61	6.40	-0.94**	-0.90 **	-1.14**	-3.84**	-22.26 **	-3.43 **	-9.89 **
\mathbf{L}_{23}	3.22 **	3.36 **	2.02 **	5.86 **	10.90 **	-0.34	-0.67 **	-0.94 **	-3.72 **	-21.01 **	-3.75 **	-7.90 **
\mathbf{L}_{24}	-2.03 **	-1.89 **	-3.98**	-0.39	-2.60	1.66 **	0.70 **	1.06 **	4.88 **	23.99 **	2.22 **	11.14 **

| \mathbf{L}_{25} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{2}{7} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	$\begin{gathered} n \\ 0 \\ 0 \\ 0 \end{gathered}$	$$	$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \stackrel{\rightharpoonup}{*} \\ & \stackrel{N}{7} \end{aligned}$		$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{+}{+} \\ & \stackrel{+}{\circ} \end{aligned}$	$\stackrel{\stackrel{*}{*}}{\stackrel{*}{+}} \stackrel{+}{+}$	$\begin{aligned} & \stackrel{*}{\oplus} \\ & \underset{\sim}{\oplus} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{p} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\sim}{\infty} \\ & \stackrel{1}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{y}{\infty} \\ & \stackrel{0}{\infty} \\ & \infty \end{aligned}$	$\stackrel{\stackrel{*}{*}}{\stackrel{*}{+}} \stackrel{+}{+}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{*}{+} \\ & + \end{aligned}$	$\frac{\stackrel{3}{*}}{\stackrel{0}{2}} \frac{0}{2 \cdot}$	$\begin{aligned} & \frac{3}{*} \\ & \stackrel{0}{2} \\ & \hline 10 \end{aligned}$	$\begin{aligned} & \stackrel{3}{*} \\ & \stackrel{\sim}{\circ} \\ & \stackrel{\circ}{2} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\rightharpoonup}{9} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{4}{4} \end{aligned}$	$\begin{aligned} & \stackrel{3}{*} \\ & \stackrel{4}{4} \end{aligned}$	$\stackrel{*}{\stackrel{*}{m}}$	$\begin{aligned} & \stackrel{*}{2} \\ & \stackrel{m}{m} \end{aligned}$	\square ¢ ¢ ¢
$\begin{aligned} & \stackrel{2}{\rightrightarrows} \\ & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & \stackrel{2}{7} \\ & \stackrel{0}{6} \\ & 0 \end{aligned}$	$\begin{aligned} & * \\ & 0 \\ & 0 \\ & \text { on } \end{aligned}$	$\begin{aligned} & \stackrel{*}{6} \\ & \stackrel{0}{0} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{n}{7} \\ & \underset{6}{0} \end{aligned}$	$$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ๗. } \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & \stackrel{n}{J} \\ & \underset{0}{2} \end{aligned}$	$\begin{gathered} \text { n } \\ \text { N } \\ \text { Nì } \end{gathered}$	$\begin{aligned} & \text { n } \\ & \text { N్ } \\ & \text { ๗ิ } \end{aligned}$	$\begin{gathered} \pi \\ \underset{\sim}{0} \\ \stackrel{\infty}{6} \end{gathered}$	$\begin{aligned} & \stackrel{n}{a} \\ & \stackrel{\infty}{0} \end{aligned}$		$\begin{aligned} & \text { n } \\ & \text { A } \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \text { n } \\ & \text { H } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { H } \\ & \text { O} \end{aligned}$		$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{4} \end{aligned}$	
$\begin{aligned} & \stackrel{*}{2} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{8}{8} \\ & \stackrel{1}{\sim} \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Ü } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \underset{\Psi}{7} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \underset{Z}{F} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\dot{1}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{2}{0} \\ & \dot{\mathrm{~N}} \end{aligned}$	$\stackrel{\square}{7}$	$\stackrel{\mathscr{U}}{\underset{\sim}{7}}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{*}{\infty} \\ & \stackrel{1}{\oplus} \\ & \underset{\sim}{*} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \text { o } \\ & \text { i } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{2}{8} \\ & \underset{\sim}{9} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \text { o. } \\ & \text { O. } \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \underset{\sigma}{\stackrel{1}{2}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \sigma \\ & \underset{ণ}{\dot{N}} \end{aligned}$		$\begin{aligned} & \text { 眷 } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{*}{\ominus} \\ & \stackrel{\ominus}{7} \end{aligned}$	$\stackrel{*}{\stackrel{0}{\gtrless}}$	$\begin{aligned} & \text { U. } \\ & \text { î̀ } \\ & \text { مి } \end{aligned}$
$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\sim}{\alpha} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\stackrel{\substack{A \\ \underset{O}{\tilde{m}} \\ \hline}}{ }$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{0}{0} \\ & \stackrel{0}{4} \end{aligned}$	$\begin{aligned} & \stackrel{.}{*} \\ & \stackrel{0}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\sim}{N} \\ & \underset{\sim}{p} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{N}{N} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \stackrel{\text { N }}{-1} \end{aligned}$	$\stackrel{\stackrel{3}{*}}{\stackrel{1}{4}}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\sim}{6} \\ & \stackrel{\rightharpoonup}{p} \end{aligned}$	$\begin{aligned} & \frac{3}{*} \\ & \text { oे } \\ & \text { mi } \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \underset{\sim}{*} \\ & \underset{1}{1} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{y}{*} \\ & \stackrel{\rightharpoonup}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{1}{N} \\ & \underset{i}{\text { in }} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{N}{\mathrm{~N}} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\oplus}{+} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \infty \\ & \underset{\sim}{\infty} \\ & \underset{i}{2} \end{aligned}$		$\stackrel{\stackrel{y y}{*}}{\stackrel{4}{4}} \stackrel{1}{\infty}$	$\begin{aligned} & * \\ & \stackrel{*}{\infty} \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & \stackrel{*}{\infty} \\ & \stackrel{\infty}{0} \end{aligned}$	$\stackrel{*}{\infty} \stackrel{*}{\infty} \stackrel{+}{\infty}$
$\begin{aligned} & \text { No. } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \underset{6}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{a}{=} \\ & \stackrel{\infty}{0} \end{aligned}$	$\begin{aligned} & \stackrel{n}{3} \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{3}{*} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & * \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{\sim}{0} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	$\begin{aligned} & \stackrel{.3}{*} \\ & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	$\begin{aligned} & \stackrel{y}{a} \\ & \infty \\ & \underset{o}{0} \end{aligned}$	$\begin{gathered} \check{H} \\ \infty \\ \\ \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \stackrel{y}{\mathrm{y}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{0}{0} \\ & \stackrel{1}{6} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{*}{\stackrel{1}{0}} \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{*}{1} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{*}{*} \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{.}{*} \\ & \stackrel{\text { a }}{0} \\ & \stackrel{0}{-} \end{aligned}$	$$			

$\mathbf{L}_{21} \times \mathbf{T}_{1}$	0.19 ns	0.18 ns	1.78 ns	0.66 ns	0.67 ns	-0.42 ns	-0.25 ns	-0.17 ns	$-0.92^{* *}$	-3.84 ns	-2.48^{*}	-1.28 ns
$\mathbf{L}_{21} \times \mathbf{T}_{2}$	-0.19 ns	-0.18 ns	-1.78 ns	-0.66 ns	-0.67 ns	0.42 ns	0.25 ns	0.17 ns	$0.92^{* *}$	3.84 ns	2.48^{*}	1.28 ns
$\mathbf{L}_{22} \times \mathbf{T}_{1}$	0.44 ns	-0.07 ns	-0.22 ns	-4.09 ns	-7.58 ns	-0.19 ns	-0.22 ns	-0.22 ns	$-0.94^{* *}$	-3.84 ns	1.17 ns	-2.07 ns
$\mathbf{L}_{22} \times \mathbf{T}_{2}$	-0.44 ns	0.07 ns	0.22 ns	4.09 ns	7.58 ns	0.19 ns	0.22 ns	0.22 ns	$0.94^{* *}$	3.84 ns	-1.17 ns	2.07 ns
$\mathbf{L}_{23} \times \mathbf{T}_{1}$	-0.06 ns	-0.32 ns	1.78 ns	-4.84 ns	-7.08 ns	-0.24 ns	-0.20 ns	-0.22 ns	-0.82^{*}	-4.09 ns	1.99 ns	-2.15 ns
$\mathbf{L}_{23} \times \mathbf{T}_{2}$	0.06 ns	0.32 ns	-1.78 ns	4.84 ns	7.08 ns	0.24 ns	0.20 ns	0.22 ns	0.82^{*}	4.09 ns	-1.99 ns	2.15 ns
$\mathbf{L}_{24} \times \mathbf{T}_{1}$	0.19 ns	-0.07 ns	-0.22 ns	$7.91^{* *}$	$12.92^{* *}$	$-1.79^{* *}$	$-0.52^{* *}$	-0.42 ns	$-5.17^{* *}$	$-15.59^{* *}$	-2.53^{*}	$-4.83^{* *}$
$\mathbf{L}_{24} \times \mathbf{T}_{2}$	-0.19 ns	0.07 ns	0.22 ns	$-7.91^{* *}$	$-12.92^{* *}$	$1.79^{* *}$	$0.52^{* *}$	0.42 ns	$5.17^{* *}$	$15.59^{* *}$	2.53^{*}	$4.83^{* *}$
$\mathbf{L}_{25} \times \mathbf{T}_{1}$	-0.56 ns	-0.57 ns	-1.22 ns	0.66 ns	0.92 ns	$1.16^{* *}$	$0.83^{* *}$	$0.73^{* *}$	$4.73^{* *}$	$17.66^{* *}$	1.04 ns	$9.13^{* *}$
$\mathbf{L}_{25} \times \mathbf{T}_{2}$	0.56 ns	0.57 ns	1.22 ns	-0.66 ns	-0.92 ns	$-1.16^{* *}$	$-0.83^{* *}$	$-0.73^{* *}$	$-4.73^{* *}$	$-17.66^{* *}$	-1.04 ns	$-9.13^{* *}$

for ear length (high \times low) and kernels $/$ row (high \times low). Similarly, $\mathrm{L}_{3} \times \mathrm{T}_{2}($ high \times low) for days to 75% brown husk, $\mathrm{L}_{4} \times \mathrm{T}_{1}$ for days to 50% tasseling (average \times low) and days to 50% silking (average \times low), $\mathrm{L}_{16} \times \mathrm{T}_{2}$ for plant height (low \times high) and ear height (low \times high), $\mathrm{L}_{16} \times \mathrm{T}_{1}$ (average \times low) for days to 50% tasseling, $\mathrm{L}_{14} \times \mathrm{T}_{2}$ (low \times low) for kernel rows/cob, $\mathrm{L}_{17} \times \mathrm{T}_{1}$ (high \times high) for 1000 -kernel weight and $\mathrm{L}_{19} \times \mathrm{T}_{1}$ (low \times low) for shelling (\%). Similar results were also reported earlier by Petrovic et al. (1998); Uddin et al. (2008); Niyonzima et al. (2015).

Author's contribution

Conceptualization of research (PS); Designing of the experiments (PS and UC); Contribution of experimental materials (PS and UC); Execution of field/lab experiments and data collection (PS and UC); Analysis of data and interpretation (PS and UC); Preparation of the manuscript (PS and UC).

Conflict of Interest

Author declares that they have no conflict of interest

References

1. Alam AKMM, S Ahmed, M Begum and MK Sultan. 2008. Heterosis and combining ability for grain yield and its contributing characters in maize. Bangladesh Journal of Agricultural Research 33(3): 375-379.
2. Allard RW. 1960. Principle of Plant Breeding. John Wiley and Sons. p 154.
3. Chandel U, D Kumar and SK Guleria. 2019. Combining ability effects and heterotic grouping in newly developed early maturing yellow maize (Zea mays L.) inbreds under sub-tropical conditions. Electronic Journal of Plant Breeding 10(3): 1049-1059.
4. Chaurasia NK, RBP Nirala and B Singh. 2020. Combining ability and heterosis studies in maize (Zea mays L.) under kharif season. International Journal of Current microbiology and Applied Sciences 9(11): 2576-2586.
5. Iqbal AM, FA Nehvi, SA Wani, R Qadir and ZA Dar. 2007. Combining ability analysis for yield and yield related traits in maize (Zea maysL.). International Journal of Plant Breeding and Genetics 1(2): 101-105.
6. Kempthorne O. 1957. An Introduction to Genetic Statistics. John Wiley and Sons. p 143.
7. Negi M, DC Baskheti and Rajani. 2018. Combining ability analysis of maize inbred lines from line \times tester mating design under two plant population deity. International Journal of Current Microbiology and Applied Sciences 7(6): 3539-3550.
8. Niyonzima JP, TE Nagaraja, HC Lohithaswa, MS Uma, R Pavan, F Niyitanga and A Kabayiza. 2015. International Journal of Agronomy and Agricultural Research 7(1): 61-69
9. Panse VG and PV Sukhatme. 1984. Statistical methods for agricultural workers. Indian Council of Agricultural Research, New Delhi. P. 381
10. Patil AE, SU Charjan, SR Patil, RN Udasi, MR Puttawar and AB Palkar. 2012. Studies on heterosis and combining ability analysis in maize (Zea mays L.). Association of Soils and Crops Research Scientists 22(1): 129-138.
11. Patil AE, SU Charjan, SR Patil, RN Udasi, MR Puttawar and AB Palkar. 2012. Studies on heterosis and combining ability analysis in maize (Zea mays L.). Association of Soils and Crops Research Scientists 22(1): 129-138
12. Petrovic Z, UN Sadu, N Sad and P Fakultet. 1998. Combining abilities and mode of inheritance of yield and yield components in maize (Zea maysL.). Scientia Agricola 48(1): 63-65
13. Ram L, R Singh, SK Singh and RP Srivastava. 2015. Heterosis and Combining ability studies for quality protein maize. Journal of Crop Breeding and Genetics 1(2): 8-25
14. Uddin MS, M Amiruzzaman, SA Bagum, MA Hakim and MR Ali. 2008. Combining ability and heterosis in maize (Zea mays L.). Bangladesh Journal of Genetics and Plant Breeding 21(1): 21-28.
